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Abstract

An expanded chemical mass balance (CMB) approach for PM2.5 source apportionment is presented in which both the

local source compositions and corresponding contributions are determined from ambient measurements and initial

estimates of source compositions using a global-optimization mechanism. Such an approach can serve as an alternative to

using predetermined (measured) source profiles, as traditionally used in CMB applications, which are not always

representative of the region and/or time period of interest. Constraints based on ranges of typical source profiles are used

to ensure that the compositions identified are representative of sources and are less ambiguous than the factors/sources

identified by typical factor analysis (FA) techniques. Gas-phase data (SO2, CO and NOy) are also used, as these data can

assist in identifying sources. Impacts of identified sources are then quantified by minimizing the weighted-error between

apportioned and measured levels of the fitting species. This technique was applied to a dataset of PM2.5 measurements at

the former Atlanta Supersite (Jefferson Street site), to apportion PM2.5 mass into nine source categories. Good agreement

is found when these source impacts are compared with those derived based on measured source profiles as well as those

derived using a current FA technique, Positive Matrix Factorization. The proposed method can be used to assess the

representativeness of measured source-profiles and to help identify those profiles that may be in significant error, as well as

to quantify uncertainties in source-impact estimates, due in part to uncertainties in source compositions.

r 2006 Elsevier Ltd. All rights reserved.
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1. Background

Chemical mass balance (CMB) receptor models
are a common tool for apportioning ambient levels
of pollutants (mainly particulate matter) among the
major contributing sources. CMB combines the
chemical and physical characteristics of particles or
gases measured at sources and receptors to quantify
e front matter r 2006 Elsevier Ltd. All rights reserved
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the source contributions to the receptor. Quantifica-
tion is based on the solution to a set of linear
equations that express each receptor’s ambient
chemical concentration as a linear sum of products
of source-profile fractions and source contributions
(US-EPA, 2004a, b), as expressed by

Ci ¼
Xn

j¼1

f ijSj þ ei, (1)

where Ci is the ambient concentration of chemical
species i (mgm�3), fi,j the fraction of species i in
.
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emissions from source j, Sj the contribution (source-
strength) of source j (mgm�3), n the total number of
sources, ei the error term.

Source profile fractions (fij) and the receptor
concentrations (Ci), along with uncertainty esti-
mates, serve as input data to the CMB model.
Results consist of the contribution of each source
category (Sj) to the measured concentration of
different species at the receptor. A frequent source
of uncertainty in the implementation of CMB is the
choice of source profiles used as input. There is a
wide variety of source profiles in the literature, but
these are not always representative of the region
and/or time of interest. Some examples of this are as
follows: soil (dust) composition often varies geo-
graphically; emission composition from biomass
burning is dependent on the type of vegetation or
wood burned (e.g. agriculture burning, soft or hard
wood residential combustion); emissions from coal-
fired power plants may vary depending on the types
of coal used; mobile source emissions can vary from
region to region and temporally due to different
fuels, fleet composition, or driving conditions. To
date, the most common approach to addressing this
variability has been to select profiles that are most
representative of the region and time period of
interest from those that are available. In many
cases, however, specific profiles are not available.
Moreover, a profile derived from any one source at
one time may not be representative due to
variability in time and space. Due to these reasons,
factor analysis (FA) techniques have been devel-
oped (Hopke, 1988; Paatero and Tapper, 1994) and
are often applied to characterize and quantify the
sources contributing to ambient particulate matter
levels (Kim et al., 2003; Kim et al., 2004a, b;
Maykut et al., 2003). FA models do not require the
use of predetermined source profiles, but results are
often difficult to interpret as factors do not
necessarily represent specific sources (Seinfeld and
Pandis, 1998). The underlying assumption in all FA
models is that the chemical composition of ambient
particulate samples includes information about the
fingerprints of the sources affecting the receptor,
and that this information can be used to derive the
source compositions. The procedure for character-
izing these sources (or factors) is based on correla-
tions between ambient levels of the different species,
a high correlation indicating that the species share a
common source (Seinfeld and Pandis, 1998). One of
the more commonly used FA methods in recent
years is Positive Matrix Factorization (PMF)
(Paatero and Tapper, 1994). In PMF, factors are
constrained to have non-negative fi,j’s, and no
sample can have a negative source contribution.
Application of PMF requires that error estimates
for the data be chosen judiciously so that the
estimates reflect the quality and reliability of each of
the data points. A critical step in PMF analysis is
the determination of the number of factors (Paa-
tero, 2004).

2. Methods

2.1. CMB model expansion to include variable source

compositions

This study combines concepts from FA and CMB
applications to calculate source contributions to
ambient PM2.5 without relying solely on emissions
composition studies or on interpretation of factors
obtained by FA as sources. The technique is based
on solving the same set of equations used in CMB
modeling Eq. (1), but instead of using predeter-
mined source profiles, ranges for different fractions
in source-indicative profiles are used as input. The
model then optimizes the fractions of different
species within each profile by minimizing residual
mass, subject to several constraints. Lower and
upper bounds for the fractions of species in the
various source profiles are set based on knowledge
of typical compositions of various sources. Instead
of deriving the contributing factors by FA, and then
identifying (interpreting) them as sources based on
knowledge of typical composition, this information
is used beforehand to constrain the model while
searching for the best combination of sources to
describe the ambient levels of PM2.5. The choice of
source categories to include likewise is made
beforehand, in contrast to FA.

As a basis for setting the constraints for the
fractions of various species in the source profiles,
suggested values are taken from in the validation
protocol for CMB8.2 (US-EPA, 2004b) (Table 1).
These bounds on the abundance of species were
slightly modified (Table 2) and several additional
constraints were added to better characterize the
different sources. Emissions from light-duty gaso-
line vehicles (LDGVs) usually contain more OC
than EC (Gillies and Gertler, 2000), so a constraint
of OC/ECX1 was used for LDGVs, and an
opposite constraint was used for heavy duty diesel
vehicles (HDDVs). However, the relative amount of
EC and OC components in PM emissions from both
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Table 2

Lower and upper bounds for chemical fractions of total PM2.5 mass emitted in source profiles

Species Gasoline vehicles

(GV)

Diesel vehicles (DV) Soil dust (DUST) Vegetative burning

(BURN)

Coal power plants

(CFPP)

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

EC 0.05 1 0.4 1 0 0.01 0.01 0.3 0.01 0.1

OC 0.3 1 0.1 1 0.01 0.1 0.3 1 0.01 0.3

SO4
�2 0.01 0.1 0.01 0.1 10�3 0.01 10�3 0.01 0.01 0.3

NO3
� 0.01 0.1 0.01 0.1 0 10�3 10�3 0.01 0 0

Cl� 0.01 0.1 0.01 0.1 10�3 0.01 0.01 0.1 0 0.01

NH4
+ 10�3 0.01 10�3 0.01 0 10�3 10�3 0.01 10�3 0.01

Al 10�3 0.05 10�4 10�3 0.01 0.2 0 0 0.01 0.1

As 0 0 0 0 0 0 0 0 0 10�3

Ba 0 0 0 0 10�3 0.01 0 0 10�3 0.01

Br 10�4 0.01 10�5 10�3 0 0 0 10�3 0 10�3

Ca 10�3 0.05 10�4 10�3 0.01 0.2 0 10�3 0.01 0.2

Fe 10�3 0.05 10�4 10�3 0.01 0.2 0 10�3 0.01 0.1

K 0 10�3 0 10�4 0.01 0.1 0.01 0.1 10�3 0.01

Mn 10�4 0.01 10�4 10�3 10�3 0.05 0 10�3 0 0.005

Pb 0 10�3 0 10�3 0 0 0 10�3 0 0.01

Se 0 0 0 0 0 0 0 0 10�4 0.01

Si 10�3 0.05 10�4 0.01 0.1 1 0 0 0.05 0.2

Ti 0 0 0 0 10�3 0.05 0 0 10�3 0.01

Zn 10�3 0.02 10�4 10�3 0 10�3 0 10�3 10�3 0.01

Additional

constraints

Sump1; OC/ECX1;

TCX0.5;

OM/OCX1.4

Sump1; OC/ECp1;

TCX0.5;

OM/OCX1.4

Sump1;

Sum metal

oxidesp1

Sump1; OC/ECX3;

TCX0.5;

OM/OCX1.4

Sump1;

Sum metal

oxidesp1;

Table 1

Chemicals from particles in different emissions sources (US-EPA, 2004b)

Source type Dominant

particle size

Chemical fractions

o0.001 0.001–0.01 0.01–0.1 40.1

Motor

vehicles

Fine Cr, Ni, Y NH4
+, Si, Cl, Al, Si, P, Ca,

Mn, Fe, Zn, Br, Pb

Cl�, NO3
�, SO4

�2, NH4
+, S OC, EC

Vegetative

burning

Fine Ca, Mn, Fe, Zn, Br, Rb, Pb NO3
�, SO4

�2, NH4
+, Na+, S Cl�Ķ+, Cl, K OC, EC

Coal-fired

boiler

Fine Cl, Cr, Mn, Ga, As, Se, Br,

Rb, Zr

NH4
+, P, K, Ti, V, Ni, Zn,

Sr, Ba, Pb

SO4
�2, OC, EC, Al, S, Ca,

Fe

Si

Soil dust Coarse NO3
�, NH4

+, P, Zn, Sr, Ba SO4
�2, Na+, K+, P, S, Cl,

Mn, Ba, Ti

EC, OC, Al, K, Ca, Fe OC, Si

A. Marmur et al. / Atmospheric Environment 41 (2007) 493–505 495
gasoline and diesel vehicles is highly variable (Gillies
and Gertler, 2000), and there is significant overlap
in the range of values between the two mobile
source types. Therefore, trying to distinguish gaso-
line and diesel contributions separately on the basis
of just EC and OC mass fractions is suspect (Gillies
and Gertler, 2000). For this reason, we also
incorporated information on typical CO/PM2.5,
NOx/PM2.5 and SO2/PM2.5 ratios in the emissions
from these, as well as other sources (Marmur et al.,
2005). Higher bounds for trace metals are set for
gasoline vehicles, compared to diesel vehicles (HEI,
2002; Manchester-Neesvig et al., 2003). For vegeta-
tive burning, a constraint of OC/ECX3 was used, as
this source is characterized by high OC to EC ratios
(US-EPA, 2004b). A relatively large fraction
(0.01–0.1) of potassium in biomass burning emis-
sions (US-EPA, 2004b) is also used. For all sources,
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the sum of fractions over all species was constrained
to be less than or equal to unity. In the case of soil
dust and power-plants, oxidized forms of the metals
are assumed (such as Al2O3, SiO2 etc.). Organic
material (OM) fractions in the primary emissions
were bounded by a minimum contribution of 1.4
times the fraction of OC in the profile. These
constraints are summarized by the following equa-
tions:

f i;j lowerpf i:jpf i;j upper, (2)

f OC;j=f EC;jXROC=EC, (3)

f OC;j þ f EC;jXRTC, (4)

1:4f OC;j þ f iðexcluding OCÞ;jp1:0

ðfor all sources but soil�dust and power�plantsÞ, ð5Þ

1:89f Al;j þ 1:40f Ca;j þ 1:43f Fe;j þ 1:20f K;j

þ 2:14f Si;j þ 1:67f Ti;j þ 1:4f OC;j þ f other;jp1:0

ðfor soil�dust and power�plantsÞ, ð6Þ

where, fi,j lower, fi,j upper is the lower and upper bound
on fraction of species i in source j (Table 2), ROC/EC

the bound on OC/EC ratio (X1 for gasoline
vehicles; X3 for vegetative burning; p1 for diesel
vehicles; Table 2), RTC the bound on TC (EC+OC)
fraction (X0.5 for gasoline and diesel vehicles,
vegetative burning; Table 2), 1.89, 1.40, 1.43, 1.20,
2.14, 1.67 the ratios of molecular weights of metal-
oxide/metal for Al2O3, CaO, Fe2O3, K2O, SiO2 and
TiO2, respectively.

To address the formation of secondary pollu-
tants, four pure component profiles were used for
ammonium-sulfate (AMSULF; 73% SO4

�2, 27%
NH4

+), ammonium-bisulfate (AMBSLF; 84%
SO4
�2, 16% NH4

+), ammonium-nitrate (AMNITR;
78% NO3

�, 22% NH4
+) and other/secondary OC

(OTHROC; 100% OC), based on the molecular
weights of the components (Marmur et al., 2005).

For each sample, Eq. (1) was solved by minimiz-
ing w2:

w2 ¼
Xm

i¼1

Ci �
Pn

j¼1f ijSj

� �2
s2Ci

, (7)

where sCi
is the uncertainty of the Ci measure-

ment. This is solved subject to the constraints on
the PM2.5 source compositions (Eqs. (2)–(6) and
Table 2), as well as the requirement to reasonably
reconstruct ambient gas-phase (SO2, CO, and NOy)
concentrations:

1

b
½GS�p

Xn

j¼1

GS

PM2:5

� �
j

Sjpb GS½ �, (8)

where GS is the ambient concentration of gaseous-

species (CO, SO2, NOy; mgm
�3), GS

.
ðPM2:5Þj the

mass ratio in emissions from source j (see Marmur
et al., 2005 for values used), Sj the contribution
(source-strength) of source j (mgm�3) to the PM2.5

loading, n the total number of sources, b the bound
for gas-species mass reconstruction (typically b ¼ 3,
to account for uncertainties in initial GS/PM2.5

ratios and changes in these ratios during transport
from source to receptor; (Marmur et al., 2005)).

This latter requirement has been shown to reduce
collinearity between source-compositions and to
achieve more plausible source-apportionment re-
sults (Marmur et al., 2005).

A global optimization program, Lipschitz global
optimizer (LGO) (Pinter, 1996; Pintér, 1997), was
utilized to find the optimal solution (by minimizing
w2), subject to the above mentioned constrains. In
LGO, the best solution is sought that satisfies all
stated feasibility constraints and maximizes (or
minimizes) the value of a given objective function
(Pinter, 1996, 1997). The objective of global
optimization is to find the best solution of nonlinear
decision models, in the possible presence of multiple
locally optimal solutions. LGO integrates a suite of
robust and efficient global and local scope solvers.
These include: global adaptive partition and search
(branch-and-bound); adaptive global random
search; local (convex) unconstrained optimization;
and local (convex) constrained optimization. The
LGO implementation of these methods does not
require derivative information. Their operations are
based exclusively on the computation of the
objective and constraint function values, at algor-
ithmically selected search points.
2.2. SEARCH 25 month dataset, Jefferson St.,

Atlanta, Georgia

Evaluation of this expanded CMB approach
involved using the SEARCH (Southeastern Aerosol
Research and Characterization) 25 month (8/98–8/
00) dataset for the Jefferson St. (JST) monitoring
site in Atlanta, GA (Hansen et al., 2006, 2003; Kim
et al., 2003; Marmur et al., 2005), which includes
data on total PM2.5 mass (gravimetric measure) and
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its components (major ions by ion chromatography;
trace metals by X-ray fluorescence; organic and
elemental carbon by thermal optical reflectance), as
well as ambient concentrations of SO2, CO and
NOy. Summation of the analytical uncertainty and 1

3

of the detection limit value was used as the overall
uncertainty assigned to each measured value. Values
below the detection limit were replaced by half of
the detection limit values, and their overall un-
certainties were set at 5

6 of the detection limit values.
Missing values were replaced by the geometric mean
of the measured values, and their accompanying
uncertainties were set at 4 times this geometric
mean value (Marmur et al., 2005). Five variable
source-profiles (GV, DV, DUST, BURN, CFPP;
Table 2) and four constant ones (AMSULF,
AMBSLF, AMNITR, OTHROC) were included
in the analysis.

3. Results

3.1. Derived source-profiles

First, source profile compositions were deter-
mined (for five sources: GV, DV, DUST, BURN,
CFPP; for the species in Table 2) using, initially, a
subset of the data. In this way, a separate set of data
could be used in the evaluation. Out of the total of
762 days, we identified 447 days in which all of the
data (all ions, carbon fractions, metals, CO, SO2,
NOy) were available. From those 447 days, we chose
all the January, April, July and October samples
(133 days) to represent the four seasons. LGO then
was applied to find the optimal solution Eq. (1)
based on the ordinary weighted least-squares
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

SO4--

x10

NO3-

x10

Cl- NH4+

x10

EC OC Al

x10

Br

x10

F
ra

ct
io

n
 o

fP
M

2.
5 e

m
is

si
o

n
s

GV1 GV2 LDGV (NFRAQS, 1998)

Fig. 1. Source profiles generated by LGO for gasoline-fueled vehicles (G

profile from the NFRAQS study (Zielinska et al., 1998), previously u

represent 7one standard-deviation of the LGO estimated (over 133 an
(OWLS) approach Eq. (7) (Christensen and Gunst,
2004; Friedlan, 1973) while adjusting the source
profile fractions within the allowable bounds (Table
2, Eqs. (2)–(6)) and subject to the gas-phase
constraints Eq. (8). This becomes an optimization
problem with more than one hundred decision
variables (fractions and contributions), requiring
several minutes of computational workload (on a
Pentium 4.0 PC) and several tens of thousands of
iterations per sample to reach a global minimum
point. The computational workload for a solution
using predetermined source-profiles is much smal-
ler, reaching convergence within several seconds and
several hundreds of iterations per sample. Source
profiles obtained are analyzed for how often bounds
(lower or upper) on individual species are met and
for compositional variability between samples. The
process was evaluated by repeating the analysis
using all the February, May, August (excluding
1998), and November samples (149 days). No
significant seasonal variability in source composi-
tion was observed. Therefore, the comparison will
focus on average source compositions for each of
the two test cases.

Average source-profile compositions for the two
scenarios (two subsets of the data: Case 1 based on
133 samples; Case 2 based on 149 samples) show
little difference (Figs. 1–5). When compared to
several source profiles from the literature (Chow et
al., 2004; Cooper, 1981; Zielinska et al., 1998)
differences arise, but the species driving source
apportionment modeling (Marmur et al., 2006) are
the same. Major differences are observed for
primary sulfate, nitrate and ammonium content in
various sources because LGO assigns most of that
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Fig. 2. Source profiles generated by LGO for diesel-fueled vehicles (DV1 based on 133 cases, DV2 based on 149 cases), compared to a

profile from the NFRAQS study (Zielinska et al., 1998), previously used to apportion PM2.5 in Atlanta (Marmur et al., 2005). Bars

represent7one standard-deviation of the LGO estimated (over 133 and 149 cases) or measured fractions.
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Fig. 3. Source profiles generated by LGO for vegetative burning (BURN1 based on 133 cases, BURN2 based on 149 cases), compared to a

vegetative burning profile from the BRAVO study (Chow et al., 2004), previously used to apportion PM2.5 in Atlanta (Marmur et al.,

2005). Bars represent7one standard-deviation of the LGO estimated (over 133 and 149 cases) or measured fractions.
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Fig. 4. Source profiles generated by LGO for soil-dust (DUST1 based on 133 cases, DUST2 based on 149 cases), compared to an

Alabama soil dust profile (Cooper, 1981), previously used to apportion PM2.5 in Atlanta (Marmur et al., 2005). Bars represent7one

standard-deviation of the LGO estimated (over 133 and 149 cases) or measured fractions.
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Fig. 5. Source profiles generated by LGO for coal-fired power plants (CFPP1 based on 133 cases, CFPP2 based on 149 cases), compared

to a CFPP profile measured in Texas (Chow et al., 2004), previously used to apportion PM2.5 in Atlanta (Marmur et al., 2005). Bars

represent7one standard-deviation of the LGO estimated (over 133 and 149 cases) or measured fractions.
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mass into the secondary sulfate and nitrate cate-
gories. These estimates of primary sulfate and
nitrate content are therefore highly uncertain;
however, these species do not serve as markers for
any of the sources of primary emissions. Hence, the
effect of this uncertainty on the overall source-
apportionment process is likely a bias in predicted
impacts rather than uncertainty in the prediction of
day-to-day variation in source impacts.

LGO generated gasoline-vehicle profiles (GV1
and GV2 in Fig. 1) are comparable to the profile
from NFRAQS (Zielinska et al., 1998), being
characterized by an OC/EC ratio of 1.6 on average
(a constraint of X1.0 was used), compared to 2.3 in
the NFRAQS profile. The total carbon content
(TC) is 0.67 (a constraint of X0.5 was used),
compared to 0.78, in the NFRAQS profile. Content
of Zn, a good marker for gasoline vehicles in the
Atlanta source mixture (Marmur et al., 2006;
Marmur et al., 2005), is similar (average of 0.008
vs. 0.009). The content of other trace metals (Al, Ca,
Fe, Si) is similar.

Diesel vehicle profiles generated by LGO (DV1
and DV2) are characterized by an OC/EC ratio of
0.36 (a constraint of p1.0 was used) compared to
0.27 in the NFRAQS profile (Zielinska et al., 1998).
The TC content is 0.77 on average (a constraint of
X0.5 was used), compared to 0.93. Metal content is
similar among all diesel vehicle profiles.

Vegetative burning profiles from LGO were fairly
similar to the BURN profile from BRAVO (Chow
et al., 2004), with an OC/EC ratio of 4.7 on average,
compared to 4.1 from BRAVO. Potassium content
in the LGO profiles is 0.063 on average, compared
to 0.056 in the BRAVO profile. The LGO profiles’
chlorine content is roughly half of that in the
measured profile (0.037 compared to 0.076).

The LGO-derived soil dust profiles are similar
to the Alabama soil-dust profile from Cooper
et al. (Cooper, 1981) with respect to Si, Ti,
Mn and Fe content, but Al, Ca and K content
differed significantly. The high Al content in the
Alabama profile (Cooper, 1981) seems to be an
overestimate for Atlanta aerosol (Marmur et al.,
2005).

Some differences arise when comparing the LGO
derived CFPP profile to the one from BRAVO
(Chow et al., 2004), which are based on measure-
ments in Texas. SO4

�2, EC, OC, Al, Ca, Fe and Si
are the most abundant species in both sets of
profiles, but differences in their content is evident,
especially in SO4

�2 and OC content, though neither
is an important tracer for primary CFPP PM2.5. As
previously mentioned, LGO assigns most of the
SO4
�2 to the secondary ‘‘ammonium-sulfate’’ cate-

gory, likely underestimating sulfate content in
primary emissions. OC is apportioned to carbon-
rich source-categories such as GV, DV and BURN
based on constraints on both OC content and OC/
EC ratios, and to the ‘‘other OC’’ category
(secondary and un-apportioned organic carbon).
For relatively carbon-lean source-categories, such as
DUST and CFPP, for which knowledge on typical
OC/EC ratios is limited, LGO tends to suggest a
lower fraction of OC. The content of selenium, a
unique tracer for CFPP, is very similar, 0.0061 in
the LGO profiles, compared to 0.0058 in the
BRAVO profile.

The role of the constraints/bounds used to derive
the source compositions were analyzed using the
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Table 3

Percent of cases (447 total) in which the derived species fraction was at the lower limit/within the allowable range/at the upper limit

Species LDGV

(low/within/upper)

HDDV

(low/within/upper)

BURN

(low/within/upper)

DUST

(low/within/upper)

CFPP

(low/within/upper)

EC 20/80/0 23/77/0 18/82/0 63/17/20 25/52/23

OC 0/100/0 35/65/0 0/100/0 66/27/7 19/79/3

OC/EC 15/85/0 0/100/0 3/97/0 — —

TC 1/99/0 4/96/0 1/99/0 — —

SO4 92/7/1 90/8/2 89/9/2 84/14/2 77/22/1

NO3 88/9/3 82/13/4 83/10/7 78/15/7 —

Cl 45/52/2 39/59/2 41/50/9 66/20/14 59/25/16

NH4 11/7/82 11/6/83 11/11/78 13/18/69 11/13/76

Al 64/35/1 51/31/19 — 80/20/0 53/45/3

As — — — — 1/11/88

Ba — — — 7/15/78 2/12/87

Br 18/81/1 30/48/23 34/34/32 — 37/33/29

Ca 30/66/3 36/39/25 38/27/35 33/64/3 3/87/10

Fe 14/78/8 32/40/28 26/32/42 14/81/6 6/63/32

K 35/33/32 38/23/39 6/75/19 14/57/28 30/25/46

Mn 54/45/0 46/48/6 55/35/9 66/34/0 66/31/3

Pb 20/39/41 15/48/37 23/28/49 — 19/34/47

Se — — — — 2/71/26

Si 44/53/3 41/49/10 — 11/89/0 8/81/11

Ti — — — 23/74/3 15/41/44

Zn 4/89/7 22/42/36 25/30/45 32/27/41 19/25/56
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entire dataset of derived source-profiles (447 cases),
in terms of percent of cases in which either bound
(lower/upper) were found limiting (Table 3). These
data indicate that the constraints are most often
limiting for species that are not unique tracers or
key driving species of a given category. Examples
are sulfate, nitrate and ammonium content in all
sources of primary PM 2.5, OC and non-crustal
elements in soil dust, and various metals such as Al,
K, Mn and Si in both types of mobile sources.
However, a key success of the source-profile
derivation process is LGO’s ability to estimate the
fraction of unique/key species well within the
allowable range in most cases. Examples are EC,
OC, TC, OC/EC ratio and Zn for gasoline vehicles;
EC, OC, TC and OC/EC ratio for diesel vehicles;
EC, OC, TC, OC/EC ratio and K for wood burning;
Ca, Fe, Si, and Ti for dust; and Ca and Se for coal-
fired power plants.

3.2. Source apportionment based on the derived

PM2.5 source profiles

Using LGO-derived source profiles (LDSP) based
on all available samples (447 cases for the period of
1/8/1998–31/8/2000, Table 4) to apportion daily
PM2.5 levels measured at the Jefferson Street site in
Atlanta, typically led to similar results as when
measurement-based source profiles (MBSP) were
used (Marmur et al., 2005) (Fig. 6; Tables 5–7),
though with a couple major differences.

PM2.5 attributed to wood burning was
0.66 mgm�3, on average, using LDSP versus
1.1 mgm�3 using MBSP. This is driven, in part, by
the higher potassium fraction in the LGO derived
DUST profile, compared to the measurement-based
DUST profile. Other differences include diesel
PM2.5 (2.3 mgm�3 using LDSP, 1.9 mgm�3 using
MBSP) and ‘‘other OC’’ (3.1 and 2.5 mgm�3,
respectively).

Comparing the quality of fit achieved in the two
cases (Table 5), finds a significantly lower w2 value
(error function being minimized) (Marmur et al.,
2005) using LDSP (12.6) compared to MBSP (20.3).
This is driven by several trace species, such as Br,
Ca, Fe, K, Pb and Si, for which their ambient
concentrations were better reconstructed using
LDSP (Al was not used as a fitting species in the
MBSP solution). However, EC, Cl� and Zn were
better fit using the MBSP. The improved fit for
potassium using LDSP can partially explain the
lower mass contribution of BURN using LDSP,
compared to MBSP. The improved fit for Si, Fe and
Al using LDSP may indicate that the DUST profile
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Fig. 6. Average source contributions (1/8/98–31/8/00) to PM2.5

at the Atlanta Jefferson Street site, using LGO-derived source-

profiles (this study) and measurement-based source-profiles

(Marmur et al., 2005) (GV—gasoline vehicles; DV—diesel

vehicles; BURN—vegetative burning; DUST—soil dust;

CFPP—coal fired power plants; AMSULF—ammonium sulfate;

AMBSLF—ammonium-bisulfate; AMNITR—ammonium-ni-

trate; OTHROC—Other OC; UNSPEC—unspecified).

Table 4

LGO derived PM2.5 source profiles based on 447 days in which all relevant data (ions, EC, OC, metals, CO, SO2, NOy) were available

Species GV DV DUST BURN CFPP

SO4
�2 0.012970.0138 0.012870.0139 0.001370.0015 0.001370.0016 0.030770.0563

NO3
� 0.014470.0174 0.016170.0205 0.000170.0003 0.001870.0025 0.000070.0000

Cl� 0.024070.0236 0.023870.0222 0.002670.0033 0.037470.0320 0.002370.0039

NH4 0.008870.0031 0.008870.0030 0.000870.0004 0.008670.0032 0.008770.0031

EC 0.257570.1323 0.565470.1570 0.002470.0041 0.109370.0609 0.052270.0357

OC 0.417670.0914 0.206370.1059 0.015070.0301 0.522570.0626 0.128070.1036

Al 0.003270.0073 0.000370.0004 0.015070.0154 0.000070.0000 0.025370.0238

As 0.000070.0000 0.000070.0000 0.000070.0000 0.000070.0000 0.001070.0002

Ba 0.000070.0000 0.000070.0000 0.008970.0028 0.000070.0000 0.009570.0019

Br 0.001470.0018 0.000570.0004 0.000070.0000 0.000570.0005 0.000470.0005

Ca 0.010970.0133 0.000570.0004 0.046770.0469 0.000570.0005 0.115770.0552

Fe 0.021070.0157 0.000570.0004 0.086770.0582 0.000670.0005 0.074570.0280

K 0.000570.0005 0.000170.0000 0.066870.0342 0.062870.0304 0.006670.0041

Mn 0.000370.0007 0.000370.0003 0.002570.0046 0.000270.0004 0.000470.0011

Pb 0.000670.0004 0.000670.0004 0.000070.0000 0.000670.0005 0.006370.0043

Se 0.000070.0000 0.000070.0000 0.000070.0000 0.000070.0000 0.006170.0035

Si 0.007670.0130 0.002670.0037 0.241970.0897 0.000070.0000 0.134170.0475

Ti 0.000070.0000 0.000070.0000 0.012070.0125 0.000070.0000 0.006970.0036

Zn 0.007470.0054 0.000670.0004 0.000570.0005 0.000670.0005 0.007570.0037

GV—gasoline vehicles; DV—diesel vehicles; BURN—vegetative burning; DUST—soil dust; CFPP—coal fired power plants.
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derived by LGO is more representative of Atlanta
soil dust, compared to the Alabama soil profile used
(Cooper, 1981). Aluminum was excluded as a fitting
species in the MBSP study (Marmur et al., 2005)
because including it did not improve the fit
significantly (calculated/observed ratio for Al was
4.0 when included, 4.7 when excluded), but the chi-
square increased (22.4 vs. 20.3), indicating that the
DUST impact was driven by another species (Si)
(Marmur et al., 2006), and that the Al/Si ratio in the
soil profile is too high compared to ambient
measurements in Atlanta.

To assess the difference in daily variability in
source impacts based on LDSP and MBSP, we also
computed correlations between the various source-
contribution estimates (Table 6). Of the five source
categories for which profiles have been derived, the
source inter-correlations are high for DUST (0.97),
GV (0.93), and CFPP (0.89), slightly lower for
BURN (0.83), and relatively low for DV (0.68).
DV and BURN were previously mentioned for
differences in their average source contributions
based on the two methods (Fig. 6). The correlations
for all the secondary PM2.5 categories are high
(0.95–1.00).

Further analyzing differences in the DV and
BURN source contributions predicted by the two
methods, MBSP DV source impact is highly
correlated with EC (0.96) whereas the LDSP DV
source impact has a lower correlation with EC
(0.72). This indicates that EC is more of a driving
force in the MBSP solution than in the LDSP
solution. For BURN, the correlations with K were
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Table 5

Performance measures for the LDSP and MBSP solutions

LDSP (this study) MBSP (Marmur et al.,
2005)

Mean (S.D.) Mean (S.D.)

Chi-square
(error function)

12.4 (12.0) 20.3 (16.8)

R 0.9836 (0.0349) 0.9879 (0.0324)
% Total mass 92.3 (18.7) 90.5 (17.4)
SO4
�2 ratio 1.06 (0.07) 1.07 (0.07)

NO3
� ratio 1.16 (0.79) 1.18 (0.87)

Cl� ratio 1.31 (0.77) 1.06 (0.63)
NH4

+ ratio 0.88 (0.15) 0.88 (0.15)
EC ratio 0.94 (0.37) 0.98 (0.13)
OC ratio 1.00 (0.03) 1.00 (0.03)
Al ratioa 1.50 (0.86) 4.67 (2.81)
As ratio 0.19 (0.18) 0.32 (0.25)
Ba ratio 0.26 (0.20) 0.10 (0.08)
Br ratio 1.26 (1.36) 0.39 (0.38)
Ca ratio 1.08 (0.34) 1.15 (0.34)
Fe ratio 0.85 (0.19) 0.55 (0.17)
K ratio 1.05 (0.46) 1.19 (0.49)
Mn ratio 1.57 (1.23) 0.69 (0.58)
Pb ratio 1.12 (0.95) 0.27 (0.23)
Se ratio 1.25 (1.27) 1.11 (1.20)
Si ratio 1.07 (0.19) 1.28 (0.12)
Ti ratio 1.16 (0.70) 1.27 (0.70)
Zn ratio 0.92 (0.37) 1.01 (0.35)
SO2 ratio 2.13 (0.89) 1.99 (0.97)
CO ratio 1.75 (0.84) 2.06 (0.83)
NOy ratio 1.63 (0.68) 1.58 (0.66)

Chi-square (error function), correlation (R) between ambient and

reconstructed PM2.5, percent of total mass explained, and

calculated-to-observed ratios (ideally would approach 1). Bolded

values are superior compared to the other solution.
aAl was not included as a fitting species in the MBSP solution

(Marmur et al., 2005). To allow for a full comparison, we also

reran the MBSP analysis with Al as fitting species. Al fit was

slightly improved (calculated/observed ratio of 4.0 vs. 4.7),

though still very much overestimated, while the overall fit (as

expressed by chi-square) worsened (22.4 vs. 20.3).

Table 6

Correlation matrix (R) of source-contributions based on LDSP and M

LDSP (this study)

GV DV DUST BU

MBSP (Marmur et al., 2005) GV 0.93 0.43 0.12 0.

DV 0.22 0.68 0.19 0.

DUST 0.17 0.33 0.97 0.

BURN 0.10 0.02 �0.15 0.

CFPP 0.28 0.39 0.15 0.

AMSULF 0.03 0.23 0.29 0.

AMBSLF 0.03 �0.04 �0.07 0.

AMNITR 0.26 0.15 �0.09 0.

OTHROC 0.42 0.70 0.20 0.

Bolded values represent same-source correlations.

A. Marmur et al. / Atmospheric Environment 41 (2007) 493–505502
more similar, 0.62 based on the MBSP solution,
0.67 based on LDSP.

Effects of fluctuations in tracer concentrations on
source contributions are investigated further by a
sensitivity analysis, in which the ambient concentra-
tions of one PM2.5 component at a time were
increased by 50% and the resulting effects on the
source-attributions (using the fixed derived source
profiles) were analyzed. These results are compared
to a similar analysis performed on the MBSP
solution (Marmur et al., 2006) (Table 7). DV source
contributions are driven mainly by EC in both
solutions (62% and 70% increase in DV contribu-
tion based on LDSP and MBSP due to a 50%
increase in EC concentrations), but the LDSP is less
sensitive to EC and more sensitive to Si compared to
the MBSP solution. In addition, EC has a bigger
effect on the spilt between gasoline and diesel
vehicles in the LDSP solution, scavenging more
mass from the GV category compared to the MBSP
case. Similarly, mass is scavenged from the BURN
category using the LDSP, not so using MBSP. The
BURN impact based on the LDSP solution is more
sensitive to K.

The selection of bounds is a critical step in the
analysis, and this choice can have an effect on the
solutions obtained. However, setting the bounds
based on well-based knowledge of typical source
compositions (such as in Tables 1, 2) reduces the
possibility of noise or randomness in the source-
attributions. To assess the effect of bound selection
on the source-apportionment results, we repeated
the analysis, this time relaxing both the lower
(dividing) and upper (multiplying) species fraction
bounds by a factor of two. This had little effect on
the temporal patterns in source contributions, with
BSP solutions

RN CFPP AMSULF AMBSLF AMNITR OTHROC

33 0.12 0.07 �0.02 0.30 0.29

62 0.22 0.26 �0.03 0.21 0.41

17 0.22 0.33 �0.08 �0.08 0.17

83 �0.08 �0.04 0.05 0.22 0.12

16 0.89 0.21 0.06 0.08 0.31

13 0.24 1.00 �0.08 �0.03 0.30

05 0.07 �0.12 0.95 0.17 0.01

25 0.02 �0.05 0.18 0.98 0.11

28 0.30 0.29 0.03 0.14 0.97
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Table 8

Comparison between source apportionment results (total mass and correlations) based on PMF (Kim et al., 2004a), LSDP (this study),

and MBSP (Marmur et al., 2005)

Source category LDSP/PMF mass

ratio

MBSP/PMF mass

ratio

Correlation (R): PMF,

LDSP

Correlation (R): PMF,

MBSP

Gasoline 1.15 1.31 0.52 0.50

Diesel 1.23 0.98 0.72 0.78

Soil 0.57 0.72 0.93 0.97

Wood 0.62 1.00 0.71 0.78

Table 7

Percent change in average source-attributions for a 50% increase in concentrations of several tracer species (increased one at a time)

Species % change in source-attribution for a 50% increase in the corresponding species-concentration (LDSP/MBSP)

GV DV DUST BURN CFPP OTHROC

EC �17/�6.8 62/70 2.8/1.2 �6.7/0 0.5/�1.2 �5.1/�5.6

OC 0/0.6 0/0 0/0 �0.1/0.6 0/0 73/82

Al 0.6/0 �0.1/0.3 0.5/0.7 �0.4/1 0.8/1.4 �0.1/1.7

Br 4.8/0 3.1/�0.5 �1.2/�0.5 4.1/2.8 �2.7/0 �1.5/�0.9

Ca 1.5/1.3 �0.5/�1.3 1.7/�2 �2.7/1.3 8.1/29 �0.1/�0.7

Fe 6.7/0 �4.9/0 14.3/0 �13.9/0 �0.9/0 0.1/0

K �4.7/0 �5.6/�8.5 1.3/�1.7 110/40 0.7/�3.4 �7.9/�12

Mn 0.4/0 0.6/0 4.2/3 �1.1/0 �1.4/0 �0.2/0

Pb 0/1.0 0.1/�0.3 �0.7/0 1.2/0.3 0.7/�0.3 �0.3/�0.3

Se �1.5/�0.9 0.5/0 �1.2/�1.4 0.8/0 3.1/8.6 0.2/0

Si �5.0/�1.0 5.3/0.7 27/37 �21/�1.4 �1.8/�5.5 1.5/0.3

Ti �1.5/�0.9 0.7/0 6.6/7.3 �2.4/0 0/0.9 0.6/0

Zn 38/13 �6.9/�4 �6.1/�2.3 6/0.6 �6.2/�2.8 �2.9/�2.8

SO2 �2.5/�0.8 0.4/0.5 �7/�4.6 4.8/1.3 48/32 �0.2/�0.3

CO 7.0/5.6 �1.8/�2.1 0/�0.7 0/0 �1.5/�2.8 �0.3/�1.4

NOy 3.2/3.4 0.9/1.7 �2.6/�0.6 �0.3/�0.6 �2.9/�1.1 �0.4/�0.6
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source inter-correlations of 0.93, 0.88, 0.99, 0.90,
and 0.97 for GV, DV, DUST, BURN, and CFPP,
respectively, for the sensitivity and baseline cases.
Inter-correlations for the four secondary PM2.5

categories were near perfect (0.98–1.00). Average
mass attributions changed by 10% or less for all
source categories except GV (23% reduction com-
pared to base-case) and DV (31% reduction). To
assess whether solutions obtained are unique, we
also repeated the analysis this time changing the
optimization starting point. Changing the initial
estimate of the mass apportioned to each category
(while keeping source compositions fixed) had no
effect on the final results obtained, but changing the
initial estimate of the source compositions (from the
midpoint of the allowed range to the extreme) did
change the results slightly, with source inter-
correlations of 0.95 and above for all sources except
for GV (0.88).

3.3. Comparison with FA results

Both sets of source apportionment results (LDSP
and MBSP) provide reasonable estimates of the
impacts of various sources on ambient PM2.5 levels,
as reflected by the sensitivity analysis results and
correlations with ambient tracer concentrations
(Marmur et al., 2005, 2006). While there is no
standard by which to compare the accuracies of the
LDSP and MBSP results, a comparison of these
results with FA results provides an indication of
consistency across methods. We compare the LDSP
and MBSP results to those from a PMF study (Kim
et al., 2004a) for the JST site for the period of 11/
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98–8/00 (Table 8). Only overlapping source cate-
gories are compared (gasoline, diesel, soil, wood).
There is more agreement between the results based
on PMF and MBSP than PMF and LDSP for diesel
vehicles, wood burning and soil dust. This is
expressed by both the average mass apportioned
to the various categories and by the correlations
between the various source-apportionment methods
(Table 8). Impacts of gasoline vehicles and the split
between diesel and gasoline vehicles (diesel/gasoline
ratio of 1.6, 1.7 and 1.2 based on PMF, LDSP and
MBSP results, respectively) are more alike in PMF
and LDSP results. The overall greater agreement
between PMF and the MBSP results is surprising
given that in theory LDSP and PMF are more alike.
However, the differences between method inter-
correlations (Table 8) are minor, and are a reflection
of the small differences between the LDSP and
MBSP results. These results might also suggest that
the differences between CMB and FA results are
more due to what the sources and factors, respec-
tively, represent than due to the accuracy of the
source profiles used in CMB.

4. Conclusions

Results from an expanded CMB approach deriv-
ing source-compositions based on ambient data
were compared with CMB results based on mea-
sured source-profiles. For most sources, there is
substantial agreement between the two methods.
Despite overall lower residual mass obtained by the
expanded approach presented here, there is no
standard by which to compare the accuracy of these
two methods, especially in how well they capture the
temporal trends in source impacts. As such, the
approach presented here can be viewed as one
method to assess the representativeness of measured
source-profiles and to help identify those profiles
that may be in significant error. It can also be used
to quantify uncertainties in source-impact estimates,
which are in part due to uncertainties in source
compositions.
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